Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.850
1.
J Drugs Dermatol ; 23(5): 332-337, 2024 May 01.
Article En | MEDLINE | ID: mdl-38709699

BACKGROUND: Peer-reviewed, clinical studies measuring the efficacy and usability of skin care products enhance their integrity and may guide experts in the field in providing recommendations. A single-blind, prospective clinical study was designed to assess the subject satisfaction, clinical benefit, and safety of three photodynamic topical formulations referred to as MMSRepose (MMSRep), MMSRevive (MMSRev), and MMSBalance (MMSB).  Methods: Thirteen male and female patients (mean age 49 +/- 17.8 years) applied one of the three topical serums twice daily over a period of 12 weeks. Subjects returned for photography, and blinded investigator evaluation of rhytides (fine lines) and dyspigmentation were measured on a 6- and 4-point scale, respectively. Patient-perceived efficacy of multiple clinical outcomes was measured on a 5-point scale.  Results: 100% of subjects reported at least a 1-grade improvement in global aesthetic at the conclusion of the study. Investigator assessment revealed an overall 53.3% decrease in rhytides, correlating to a mean point reduction from 1.65 +/- 0.77 to 0.77 +/- 0.53 (P<0.001) from baseline to week 12. Investigator assessment of dyspigmentation revealed a 62.7% decrease, correlating to a mean point reduction of 1.85 +/- 0.68 from week 1 to 0.69 +/- 0.48 at week 12 (P<0.001). CONCLUSION: Photodynamic serums demonstrate clinical efficacy in skin rejuvenation and high user satisfaction. There were no serious adverse events. This study is limited by the inability to randomize to placebo due to the small sample size, as subject retention was heavily impacted by the SARS-CoV-2 pandemic. Future studies may be indicated to undergo comparison with a larger cohort.  J Drugs Dermatol. 2024;23(5):332-337. doi:10.36849/JDD.7167.


Patient Satisfaction , Photochemotherapy , Skin Aging , Humans , Prospective Studies , Female , Male , Middle Aged , Photochemotherapy/methods , Photochemotherapy/adverse effects , Skin Aging/drug effects , Single-Blind Method , Adult , Aged , Treatment Outcome , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/adverse effects , Skin Care/methods , Administration, Cutaneous , Rejuvenation
2.
Int J Nanomedicine ; 19: 3737-3751, 2024.
Article En | MEDLINE | ID: mdl-38699684

Background: Chemo-photodynamic combination therapy has demonstrated significant potential in the treatment of cancer. Triptolide (TPL), a naturally derived anticancer agent, when combined with the photosensitizer Chlorin e6 (Ce6), has shown to provide enhanced anti-tumor benefits. However, the development of stimuli-responsive nanovehicles for the co-delivery of TPL and Ce6 could further enhance the efficacy of this combination therapy. Methods: In this study, we synthesized a pH/ROS dual-responsive mPEG-TK-PBAE copolymer, which contains a pH-sensitive PBAE moiety and a ROS-sensitive thioketal (TK) linkage. Through a self-assembly process, TPL and Ce6 were successfully co-loaded into mPEG-TK-PBAE nanoparticles, hereafter referred to as TPL/Ce6 NPs. We evaluated the pH- and ROS-sensitive drug release and particle size changes. Furthermore, we investigated both the in vitro suppression of cellular proliferation and induction of apoptosis in HepG2 cells, as well as the in vivo anti-tumor efficacy of TPL/Ce6 NPs in H22 xenograft nude mice. Results: The mPEG-TK-PBAE copolymer was synthesized through a one-pot Michael-addition reaction and successfully co-encapsulated both TPL and Ce6 by self-assembly. Upon exposure to acid pH values and high ROS levels, the payloads in TPL/Ce6 NPs were rapidly released. Notably, the abundant ROS generated by the released Ce6 under laser irradiation further accelerated the degradation of the nanosystem, thereby amplifying the tumor microenvironment-responsive drug release and enhancing anticancer efficacy. Consequently, TPL/Ce6 NPs significantly increased PDT-induced oxidative stress and augmented TPL-induced apoptosis in HepG2 cells, leading to synergistic anticancer effects in vitro. Moreover, administering TPL/Ce6 NPs (containing 0.3 mg/kg of TPL and 4 mg/kg of Ce6) seven times, accompanied by 650 nm laser irradiation, efficiently inhibited tumor growth in H22 tumor-bearing mice, while exhibiting lower systemic toxicity. Conclusion: Overall, we have developed a tumor microenvironment-responsive nanosystem for the co-delivery of TPL and Ce6, demonstrating amplified synergistic effects of chemo-photodynamic therapy (chemo-PDT) for hepatocellular carcinoma (HCC) treatment.


Apoptosis , Chlorophyllides , Diterpenes , Liver Neoplasms , Mice, Nude , Phenanthrenes , Photochemotherapy , Photosensitizing Agents , Porphyrins , Reactive Oxygen Species , Animals , Humans , Photochemotherapy/methods , Reactive Oxygen Species/metabolism , Hep G2 Cells , Liver Neoplasms/drug therapy , Porphyrins/chemistry , Porphyrins/pharmacology , Porphyrins/administration & dosage , Porphyrins/pharmacokinetics , Diterpenes/chemistry , Diterpenes/pharmacology , Diterpenes/pharmacokinetics , Diterpenes/administration & dosage , Hydrogen-Ion Concentration , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/administration & dosage , Apoptosis/drug effects , Mice , Carcinoma, Hepatocellular/drug therapy , Epoxy Compounds/chemistry , Epoxy Compounds/pharmacology , Epoxy Compounds/administration & dosage , Nanoparticles/chemistry , Xenograft Model Antitumor Assays , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Drug Liberation , Cell Proliferation/drug effects , Polyethylene Glycols/chemistry , Combined Modality Therapy
3.
Biomater Sci ; 12(10): 2639-2647, 2024 May 14.
Article En | MEDLINE | ID: mdl-38563394

Triple negative breast cancer (TNBC) exhibits limited responsiveness to immunotherapy owing to its immunosuppressive tumor microenvironment (TME). Here, a reactive oxygen species (ROS)-labile nanodrug encapsulating the photosensitizer Ce6 and Bcl-2 inhibitor ABT-737 was developed to provoke a robust immune response via the synergistic effect of photodynamic therapy (PDT) and the reversal of apoptosis resistance. Upon exposure to first-wave near-infrared laser irradiation, the generated ROS triggers PEG cleavage, facilitating the accumulation of the nanodrug at tumor region and endocytosis by tumor cells. Further irradiation leads to the substantial generation of cytotoxic ROS, initiating an immunogenic cell death (ICD) cascade, which prompts the maturation of dendritic cells (DCs) as well as the infiltration of T cells into the tumor site. Meanwhile, Bcl-2 inhibition counteracts apoptosis resistance, thereby amplifying PDT-induced ICD and bolstering antitumor immunity. As a result, the ROS-sensitive nanodrug demonstrates a potent inhibitory effect on tumor growth.


Apoptosis , Biphenyl Compounds , Immunotherapy , Photochemotherapy , Photosensitizing Agents , Reactive Oxygen Species , Sulfonamides , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/immunology , Humans , Apoptosis/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/administration & dosage , Female , Reactive Oxygen Species/metabolism , Animals , Mice , Biphenyl Compounds/pharmacology , Biphenyl Compounds/chemistry , Sulfonamides/pharmacology , Sulfonamides/chemistry , Chlorophyllides , Cell Line, Tumor , Piperazines/pharmacology , Piperazines/chemistry , Nitrophenols/pharmacology , Nitrophenols/chemistry , Nanoparticles/chemistry , Porphyrins/pharmacology , Porphyrins/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
4.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 433-440, 2024 Mar 20.
Article Zh | MEDLINE | ID: mdl-38645856

Objective: Port-wine stains are a kind of dermatological disease of congenital capillary malformation. Based on the biological characteristics of port-wine stains and the advantages of microneedle transdermal administration, we intend to construct a nanodrug co-loaded with rapamycin (RPM), an anti-angiogenesis drug, and photochlor (HPPH), a photosensitizer, and integrate the nanodrug with dissolvable microneedles (MN) to achieve anti-angiogenesis and photodynamic combination therapy for port-wine stains. Methods: First, RPM and HPPH co-loaded nanoparticles (RPM-HPPH NP) were prepared by the emulsification solvent-volatilization method, and its ability to generate reactive oxygen species (ROS) was investigated under 660 nm laser irradiation. Mouse hemangioendothelioma endothelial cells (EOMA) were used as the subjects of the study. The cellular uptake behaviors were examined by fluorescence microscopy and flow cytometry. The cytotoxicity effects of RPM-HPPH NP with or without 660 nm laser irradiation on EOMA cells were examined by MTT assays (with free RPM serving as the control). Then, hyaluronic acid (HA) dissolvable microneedles loaded with RPM-HPPH NP (RPM-HPPH NP@HA MN) were obtained by compounding the nanodrug with HA dissolvable microneedle system through the molding method. The morphological characteristics and mechanical properties of RPM-HPPH NP@HA MN were investigated by scanning electron microscope and electronic universal testing machine. The penetration ability of RPM-HPPH NP@HA MN on the skin of nude mice was evaluated by trypan blue staining and H&E staining experiment. Results: The RPM-HPPH NP prepared in the study had a particle size of 150 nm and generated large amounts of ROS under laser irradiation. At the cellular level, RPM-HPPH NP was taken up by EOMA cells in a time-dependent manner. The cytotoxicity of RPM-HPPH NP was higher than that of free RPM with or without laser irradiation. Under laser irradiation, RPM-HPPH NP exhibited stronger cytotoxic effects and the difference was statistically significant (P<0.05). The height of the needle tip of RPM-HPPH NP@HA MN was 600 µm and the mechanical property of a single needle was 0.75048 N. Trypan blue staining and HE staining showed that pressing on the microneedles could produce pores on the skin surface and penetration of the stratum corneum. Conclusion: RPM-HPPH NP@HA MN can deliver RPM-HPPH NP percutaneously to the lesion tissue and realize the synergistic treatment of port-wine stains with anti-angiogenic therapy and photodynamic therapy, providing a new strategy for the construction of nanodrug-loaded microneedle delivery system and the clinical treatment of port-wine stains.


Nanoparticles , Needles , Port-Wine Stain , Sirolimus , Animals , Mice , Nanoparticles/chemistry , Port-Wine Stain/drug therapy , Sirolimus/administration & dosage , Photosensitizing Agents/administration & dosage , Administration, Cutaneous , Photochemotherapy/methods , Reactive Oxygen Species/metabolism , Endothelial Cells/drug effects , Drug Delivery Systems , Angiogenesis Inhibitors/administration & dosage , Hemangioendothelioma/drug therapy
5.
Biomed Pharmacother ; 174: 116586, 2024 May.
Article En | MEDLINE | ID: mdl-38626516

Cancer treatment is presently a significant challenge in the medical domain, wherein the primary modalities of intervention include chemotherapy, radiation therapy and surgery. However, these therapeutic modalities carry side effects. Photothermal therapy (PTT) and photodynamic therapy (PDT) have emerged as promising modalities for the treatment of tumors in recent years. Phototherapy is a therapeutic approach that involves the exposure of materials to specific wavelengths of light, which can subsequently be converted into either heat or Reactive Oxygen Species (ROS) to effectively eradicate cancer cells. Due to the hydrophobicity and lack of targeting of many photoresponsive materials, the use of nano-carriers for their transportation has been extensively explored. Among these nanocarriers, liposomes have been identified as an effective drug delivery system due to their controllability and availability in the biomedical field. By binding photoresponsive materials to liposomes, it is possible to reduce the cytotoxicity of the material and regulate drug release and accumulation at the tumor site. This article provides a comprehensive review of the progress made in cancer therapy using photoresponsive materials loaded onto liposomes. Additionally, the article discusses the potential synergistic treatment through the combination of phototherapy with chemo/immuno/gene therapy using liposomes.


Liposomes , Neoplasms , Photochemotherapy , Humans , Neoplasms/therapy , Neoplasms/drug therapy , Animals , Photochemotherapy/methods , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Drug Delivery Systems/methods , Phototherapy/methods , Photothermal Therapy/methods
6.
Expert Rev Anticancer Ther ; 24(5): 263-282, 2024 May.
Article En | MEDLINE | ID: mdl-38549400

INTRODUCTION: Despite the evidence that photodynamic therapy (PDT) associated with chemotherapy presents great potential to overcome the limitations of monotherapy, little is known about the current status of this combination against cervical cancer. This systematic review aimed to address the currently available advances in combining PDT and chemotherapy in different research models and clinical trials of cervical cancer. METHODS: We conducted a systematic review based on PRISMA Statement and Open Science Framework review protocol using PubMed, Web of Science, Embase, Scopus, LILACS, and Cochrane databases. We selected original articles focusing on 'Uterine Cervical Neoplasms' and 'Photochemotherapy and Chemotherapy' published in the last 10 years. The risk of bias in the studies was assessed using the CONSORT and SYRCLE tools. RESULTS: Twenty-three original articles were included, focusing on HeLa cells, derived from endocervical adenocarcinoma and on combinations of several chemotherapeutics. Most of the combinations used modern drug delivery systems for improved simultaneous delivery and presented promising results with increased cytotoxicity compared to monotherapy. CONCLUSION: Despite the scarcity of animal studies and the absence of clinical studies, the combination of chemotherapy with PDT presents a potential option for cervical cancer therapy requiring additional studies. OSF REGISTRATION: https://doi.org/10.17605/OSF.IO/WPHN5 [Figure: see text].


Antineoplastic Combined Chemotherapy Protocols , Photochemotherapy , Uterine Cervical Neoplasms , Humans , Photochemotherapy/methods , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Female , Animals , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Combined Modality Therapy , HeLa Cells , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Drug Delivery Systems , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/pharmacology
7.
Pharmacol Res ; 203: 107150, 2024 May.
Article En | MEDLINE | ID: mdl-38521285

Cancer, with its diversity, heterogeneity, and complexity, is a significant contributor to global morbidity, disability, and mortality, highlighting the necessity for transformative treatment approaches. Photodynamic therapy (PDT) has aroused continuous interest as a viable alternative to conventional cancer treatments that encounter drug resistance. Nanotechnology has brought new advances in medicine and has shown great potential in drug delivery and cancer treatment. For precise and efficient therapeutic utilization of such a tumor therapeutic approach with high spatiotemporal selectivity and minimal invasiveness, the carrier-free noncovalent nanoparticles (NPs) based on chemo-photodynamic combination therapy is essential. Utilizing natural products as the foundation for nanodrug development offers unparalleled advantages, including exceptional pharmacological activity, easy functionalization/modification, and well biocompatibility. The natural-product-based, carrier-free, noncovalent NPs revealed excellent synergistic anticancer activity in comparison with free photosensitizers and free bioactive natural products, representing an alternative and favorable combination therapeutic avenue to improve therapeutic efficacy. Herein, a comprehensive summary of current strategies and representative application examples of carrier-free noncovalent NPs in the past decade based on natural products (such as paclitaxel, 10-hydroxycamptothecin, doxorubicin, etoposide, combretastatin A4, epigallocatechin gallate, and curcumin) for tumor chemo-photodynamic combination therapy. We highlight the insightful design and synthesis of the smart carrier-free NPs that aim to enhance PDT efficacy. Meanwhile, we discuss the future challenges and potential opportunities associated with these NPs to provide new enlightenment, spur innovative ideas, and facilitate PDT-mediated clinical transformation.


Biological Products , Nanoparticles , Neoplasms , Photochemotherapy , Humans , Animals , Neoplasms/drug therapy , Nanoparticles/chemistry , Biological Products/chemistry , Biological Products/therapeutic use , Biological Products/pharmacology , Biological Products/administration & dosage , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/administration & dosage
8.
Biomed Pharmacother ; 174: 116486, 2024 May.
Article En | MEDLINE | ID: mdl-38520865

Recurrence and metastasis of gastric cancer is a major therapeutic challenge for treatment. The presence of cancer stem cells (CSCs) is a major obstacle to the success of current cancer therapy, often leading to treatment resistance and tumor recurrence and metastasis. Therefore, it is important to develop effective strategies to eradicate CSCs. In this study, we developed a combined therapeutic strategy of photothermal therapy (PTT) and gastric cancer stem cells (GCSCs) inhibition by successfully synthesizing nanoliposomes loaded with IR780 (photosensitizer) and EN4 (c-Myc inhibitor). The nanocomposites are biocompatible and exhibit superior photoacoustic (PA) imaging properties. Under laser irradiation, IR780-mediated PTT effectively and rapidly killed tumor cells, while EN4 synergistically inhibited the self-renewal and stemness of GCSCs by suppressing the expression and activity of the pluripotent transcription factor c-Myc, preventing the tumor progression of gastric cancer. This Nano-EN-IR@Lip is expected to be a novel clinical nanomedicine for the integration of gastric cancer diagnosis, treatment and prevention.


Liposomes , Neoplastic Stem Cells , Photosensitizing Agents , Photothermal Therapy , Stomach Neoplasms , Stomach Neoplasms/pathology , Stomach Neoplasms/therapy , Stomach Neoplasms/drug therapy , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Humans , Photothermal Therapy/methods , Animals , Cell Line, Tumor , Photosensitizing Agents/pharmacology , Photosensitizing Agents/administration & dosage , Indoles/pharmacology , Indoles/chemistry , Nanoparticles/chemistry , Mice, Nude , Combined Modality Therapy , Mice , Mice, Inbred BALB C , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Nanocomposites/chemistry
9.
Adv Sci (Weinh) ; 11(17): e2302872, 2024 May.
Article En | MEDLINE | ID: mdl-38445882

Glioblastoma (GBM) is hard to treat due to cellular invasion into functioning brain tissues, limited drug delivery, and evolved treatment resistance. Recurrence is nearly universal even after surgery, chemotherapy, and radiation. Photodynamic therapy (PDT) involves photosensitizer administration followed by light activation to generate reactive oxygen species at tumor sites, thereby killing cells or inducing biological changes. PDT can ablate unresectable GBM and sensitize tumors to chemotherapy. Verteporfin (VP) is a promising photosensitizer that relies on liposomal carriers for clinical use. While lipids increase VP's solubility, they also reduce intracellular photosensitizer accumulation. Here, a pure-drug nanoformulation of VP, termed "NanoVP", eliminating the need for lipids, excipients, or stabilizers is reported. NanoVP has a tunable size (65-150 nm) and 1500-fold higher photosensitizer loading capacity than liposomal VP. NanoVP shows a 2-fold increase in photosensitizer uptake and superior PDT efficacy in GBM cells compared to liposomal VP. In mouse models, NanoVP-PDT improved tumor control and extended animal survival, outperforming liposomal VP and 5-aminolevulinic acid (5-ALA). Moreover, low-dose NanoVP-PDT can safely open the blood-brain barrier, increasing drug accumulation in rat brains by 5.5-fold compared to 5-ALA. NanoVP is a new photosensitizer formulation that has the potential to facilitate PDT for the treatment of GBM.


Brain Neoplasms , Drug Delivery Systems , Photochemotherapy , Photosensitizing Agents , Verteporfin , Animals , Photochemotherapy/methods , Verteporfin/pharmacology , Verteporfin/therapeutic use , Mice , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/pharmacology , Brain Neoplasms/drug therapy , Drug Delivery Systems/methods , Glioblastoma/drug therapy , Nanoparticles/chemistry , Disease Models, Animal , Humans , Rats , Liposomes , Cell Line, Tumor , Brain/metabolism , Brain/drug effects
10.
Mol Pharm ; 21(5): 2340-2350, 2024 May 06.
Article En | MEDLINE | ID: mdl-38546166

Uveal melanoma (UM) is the most common primary ocular malignancy in adults and has high mortality. Recurrence, metastasis, and therapeutic resistance are frequently observed in UM, but no beneficial systemic therapy is available, presenting an urgent need for developing effective therapeutic drugs. Verteporfin (VP) is a photosensitizer and a Yes-Associated Protein (YAP) inhibitor that has been used in clinical practice. However, VP's lack of tumor targetability, poor biocompatibility, and relatively low treatment efficacy hamper its application in UM management. Herein, we developed a biocompatible CD44-targeting hyaluronic acid nanoparticle (HANP) carrying VP (HANP/VP) to improve UM treatment efficacy. We found that HANP/VP showed a stronger inhibitory effect on cell proliferation than that of free VP in UM cells. Systemic delivery of HANP/VP led to targeted accumulation in the UM-tumor-bearing mouse model. Notably, HANP/VP mediated photodynamic therapy (PDT) significantly inhibited UM tumor growth after laser irradiation compared with no treatment or free VP treatment. Consistently, in HANP/VP treated tumors after laser irradiation, the tumor proliferation and YAP expression level were decreased, while the apoptotic tumor cell and CD8+ immune cell levels were elevated, contributing to effective tumor growth inhibition. Overall, the results of this preclinical study showed that HANP/VP is an effective nanomedicine for tumor treatment through PDT and inhibition of YAP in the UM tumor mouse model. Combining phototherapy and molecular-targeted therapy offers a promising approach for aggressive UM management.


Cell Proliferation , Hyaluronic Acid , Melanoma , Nanoparticles , Photochemotherapy , Photosensitizing Agents , Uveal Neoplasms , Verteporfin , Verteporfin/pharmacology , Verteporfin/therapeutic use , Animals , Photochemotherapy/methods , Uveal Neoplasms/drug therapy , Uveal Neoplasms/pathology , Mice , Melanoma/drug therapy , Melanoma/pathology , Humans , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/chemistry , Cell Line, Tumor , Nanoparticles/chemistry , Cell Proliferation/drug effects , Hyaluronic Acid/chemistry , Hyaluronan Receptors/metabolism , Apoptosis/drug effects , Xenograft Model Antitumor Assays , YAP-Signaling Proteins , Mice, Nude , Molecular Targeted Therapy/methods , Mice, Inbred BALB C , Female
11.
Am J Clin Dermatol ; 25(3): 391-405, 2024 May.
Article En | MEDLINE | ID: mdl-38351246

Field cancerization theory highlights that the skin surrounding actinic keratoses (AK) is also at increased risk for possible malignant transformation; thus, field-directed treatments may both reduce the risk of AK recurrence and potentially reduce the risk of development of cutaneous squamous cell carcinoma (cSCC). Photodynamic therapy (PDT) with either aminolevulinic acid (ALA) or methylaminolevulinate (MAL), as well as topical treatments such as 5-fluorouracil (5-FU), diclofenac gel, piroxicam, imiquimod, and ingenol mebutate, have all shown higher efficacy than vehicle treatments. PDT is widely recognized for its high efficacy; however, concerns for associated pain have driven new studies to begin using alternative illumination and pretreatment techniques, including lasers. Among topical treatments, a combination of 5-FU and salicylic acid (5-FU-SA) has shown to be the most effective but also causes the most adverse reactions. Tirbanibulin, a new topical agent approved for use in 2020, boasts a favorable safety profile in comparison with imiquimod, 5-FU, and diclofenac. Meanwhile, ingenol mebutate is no longer recommended for the treatment of AKs due to concerns for increased risk of cSCC development. Moving forward, an increasing number of studies push for standardization of outcome measures to better predict risk of future cSCC and use of more effective measures of cost to better guide patients. Here, we present an updated and comprehensive narrative review both confirming the efficacy of previously mentioned therapies as well as highlighting new approaches to PDT and discussing the use of lasers and novel topical treatments for treatment of AK.


Carcinoma, Squamous Cell , Keratosis, Actinic , Photochemotherapy , Skin Neoplasms , Humans , Keratosis, Actinic/therapy , Keratosis, Actinic/drug therapy , Photochemotherapy/methods , Photochemotherapy/adverse effects , Skin Neoplasms/prevention & control , Skin Neoplasms/etiology , Skin Neoplasms/therapy , Carcinoma, Squamous Cell/prevention & control , Carcinoma, Squamous Cell/etiology , Carcinoma, Squamous Cell/therapy , Cell Transformation, Neoplastic , Administration, Cutaneous , Treatment Outcome , Antineoplastic Agents/adverse effects , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/adverse effects , Photosensitizing Agents/therapeutic use , Laser Therapy/methods
12.
Photodiagnosis Photodyn Ther ; 42: 103611, 2023 Jun.
Article En | MEDLINE | ID: mdl-37211296

BACKGROUND: Photodynamic therapy (PDT) with 5-aminolevulinic acid (ALA) is a reliable treatment for actinic keratosis (AK), but its effect needs to be enhanced in thick lesions. Plum-blossom needle is a traditional Chinese cost-effective instrument for enhancing the transdermal delivery of ALA. However, whether it could improve the efficacy of AK treatment has not yet been investigated. OBJECTIVE: To compare the efficacy and safety of plum-blossom needle-assisted PDT in facial AK in the Chinese population. METHODS: In this multicenter, prospective study, a total of 142 patients with AKs (grades I-III) were randomized into the plum-blossom needle-assisted PDT group (P-PDT) and control PDT group (C-PDT). In the P-PDT group, each AK lesion was tapped vertically by a plum-blossom needle before the application of 10% ALA cream. In the C-PDT group, each lesion was only wiped with regular saline before ALA cream incubation. Then, 3 hours later, all the lesions were irradiated with light-emitting diode (LED) at a wavelength of 630 nm. PDT was performed once every 2 weeks until all lesion patients achieved complete remission or completed six sessions. The efficacy (lesion response) and safety (pain scale and adverse events) in both groups were evaluated before each treatment and at every follow-up visit at 3-month intervals until 12 months. RESULTS: In the P-PDT and C-PDT groups, the clearance rates for all AK lesions after the first treatment were 57.9% and 48.0%, respectively (P < 0.05). For grade I AK lesions, the clearance rates were 56.5% and 50.4%, respectively (P = 0.34). For grade II AK lesions, the clearance rates were 58.0% and 48.9%, respectively (P = 0.1). For grade III AK lesions, the clearance rates were 59.0% and 44.2%, respectively (P < 0.05). Moreover, grade III AK lesions in the P-PDT group required fewer treatment sessions (P < 0.05). There was no significant difference in the pain score between the two groups (P = 0.752). CONCLUSION: Plum-blossom needle tapping may enhance the efficacy of ALA-PDT by facilitating ALA delivery in the treatment of AK.


Acupuncture Therapy , Aminolevulinic Acid , Dry Needling , East Asian People , Keratosis, Actinic , Photochemotherapy , Photosensitizing Agents , Humans , Aminolevulinic Acid/administration & dosage , Aminolevulinic Acid/therapeutic use , Keratosis, Actinic/drug therapy , Keratosis, Actinic/ethnology , Keratosis, Actinic/pathology , Pain/etiology , Photochemotherapy/methods , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/therapeutic use , Prospective Studies , Treatment Outcome , Single-Blind Method , Administration, Cutaneous , Skin Cream/administration & dosage , Skin Cream/therapeutic use , Face , Dry Needling/instrumentation , Dry Needling/methods , Acupuncture Therapy/instrumentation , Acupuncture Therapy/methods
13.
Photodiagnosis Photodyn Ther ; 42: 103337, 2023 Jun.
Article En | MEDLINE | ID: mdl-36813143

Good management practices such as post-dipping applications (post-milking immersion bath) contribute to the dairy cattle health during lactation and minimize the appearance of mastitis (an infection in the mammary gland). The post-dipping procedure is performed conventionally using iodine-based solutions. The search for therapeutic modalities that are not invasive and do not cause resistance to the microorganisms that cause bovine mastitis instigates the interest of the scientific community. In this regard, antimicrobial Photodynamic Therapy (aPDT) is highlighted. The aPDT is based on combining a photosensitizer (PS) compound, light of adequate wavelength, and molecular oxygen (3O2), which triggers a series of photophysical processes and photochemical reactions that generate reactive oxygen species (ROS) responsible for the inactivation of microorganisms. The present investigation explored the photodynamic efficiency of two natural PS: Chlorophyll-rich spinach extract (CHL) and Curcumin (CUR), both incorporated into the Pluronic® F127 micellar copolymer. They were applied in post-dipping procedures in two different experiments. The photoactivity of formulations mediated through aPDT was conducted against Staphylococcus aureus, and obtained a minimum inhibitory concentration (MIC) of 6.8 mg mL-1 for CHL-F127 and 0.25 mg mL-1 for CUR-F127. Only CUR-F127 inhibited Escherichia coli growth with MIC 0.50 mg mL-1. Concerning the count of microorganisms during the days of the application, a significant difference was observed between the treatments and control (Iodine) when the teat surface of cows was evaluated. For CHL-F127 there was a difference for Coliform and Staphylococcus (p < 0.05). For CUR-F127 there was a difference for aerobic mesophilic and Staphylococcus (p < 0.05). Such application decreased bacterial load and maintained the milk quality, being evaluated via total microorganism count, physical-chemical composition, and somatic cell count (SCC).


Animal Husbandry , Cattle , Mastitis, Bovine , Micelles , Photochemotherapy , Female , Animals , Mastitis, Bovine/prevention & control , Mastitis, Bovine/therapy , Drug Delivery Systems/veterinary , Animal Husbandry/methods , Photosensitizing Agents/administration & dosage , Photochemotherapy/methods , Photochemotherapy/veterinary , Staphylococcus aureus/drug effects , Staphylococcus aureus/radiation effects , Staphylococcus aureus/ultrastructure , Escherichia coli/drug effects , Escherichia coli/radiation effects , Escherichia coli/ultrastructure , Light , Milk/microbiology , Microscopy, Electron, Scanning
14.
Int J Nanomedicine ; 18: 1-16, 2023.
Article En | MEDLINE | ID: mdl-36632237

Introduction: Combination therapy is a promising approach to promote the efficacy and reduce the systemic toxicity of cancer therapy. Herein, we examined the potency of a combined chemo-phototherapy approach by constructing a hyaluronidase- and reactive oxygen species-responsive hyaluronic acid nanoparticle carrying a chemotherapy drug and a photosensitizer in a tumor-bearing mouse model. We hypothesized that following decomposition, the drugs inside the nanocomplex will be released in the tumors to provide effective tumor treatment. We aimed to design a smart drug delivery system that can improve traditional chemotherapy drug delivery and enhance the therapeutic efficacy in combination with photodynamic therapy. Methods: Hydrophilic hyaluronic acid (HA) was covalently modified with a hydrophobic 5ß-cholanic acid (CA) via an ROS-cleavable thioketal (tk) linker for a targeted co-deliver of 10-Hydroxy camptothecin (HCPT) and Chlorin e6 (Ce6) into tumors to improve the efficiency of combined chemo-photodynamic therapy. Results: The obtained HA-tk-CA nanoparticle carrying HCPT and Ce6, named HTCC, accumulated in the tumor through the enhanced permeable response (EPR) effect and HA-mediated CD44 targeting after intravenous administration. Upon laser irradiation and hyaluronidase degradation, HTCC was disrupted to release HCPT and Ce6 into the tumors. Compared to the monotherapy approach, HTCC demonstrated enhanced tumor growth inhibition and minimized systemic toxicity in a tumor-bearing mouse model. Conclusion: Our results suggested that controlled dual-drug release not only improved tumor drug delivery efficacy, but also reduced systemic side effects. In addition to HCPT and Ce6 delivery, the HA-tk-CA nanocomplex can be used to deliver other drugs in synergistic cancer therapy. Since most current combined therapy uses free drugs with distinct spatiotemporal distributions, the simultaneous co-delivery of dual drugs with a remote on-demand drug delivery nanosystem provides an alternative strategy for drug delivery design.


Drug Delivery Systems , Nanoparticles , Neoplasms , Photochemotherapy , Photosensitizing Agents , Porphyrins , Animals , Mice , Camptothecin/chemistry , Cell Line, Tumor , Drug Delivery Systems/methods , Hyaluronic Acid/chemistry , Hyaluronoglucosaminidase , Nanoparticles/chemistry , Neoplasms/drug therapy , Photochemotherapy/methods , Photosensitizing Agents/administration & dosage , Porphyrins/chemistry , Reactive Oxygen Species
15.
ACS Nano ; 17(5): 4261-4278, 2023 03 14.
Article En | MEDLINE | ID: mdl-36706095

Triple-negative breast cancer (TNBC) is considered more aggressive with a poorer prognosis than other breast cancer subtypes. Through systemic bioinformatic analyses, we established the ferroptosis potential index (FPI) based on the expression profile of ferroptosis regulatory genes and found that TNBC has a higher FPI than non-TNBC in human BC cell lines and tumor tissues. To exploit this finding for potential patient stratification, we developed biologically amenable phototheranostic iron pyrite FeS2 nanocrystals (NCs) that efficiently harness near-infrared (NIR) light, as in photovoltaics, for multispectral optoacoustic tomography (MSOT) and photothermal ablation with a high photothermal conversion efficiency (PCE) of 63.1%. Upon NIR irradiation that thermodynamically enhances Fenton reactions, dual death pathways of apoptosis and ferroptosis are simultaneously triggered in TNBC cells, comprehensively limiting primary and metastatic TNBC by regulating p53, FoxO, and HIF-1 signaling pathways and attenuating a series of metabolic processes, including glutathione and amino acids. As a unitary phototheranostic agent with a safe toxicological profile, the nanocrystal represents an effective way to circumvent the lack of therapeutic targets and the propensity of multisite metastatic progression in TNBC in a streamlined workflow of cancer management with an integrated image-guided intervention.


Nanoparticles , Photosensitizing Agents , Photothermal Therapy , Triple Negative Breast Neoplasms , Humans , Cell Death , Cell Line, Tumor , Iron/administration & dosage , Iron/therapeutic use , Nanoparticles/administration & dosage , Nanoparticles/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/radiotherapy , Female , Infrared Rays/therapeutic use , Photothermal Therapy/methods , Sulfides/administration & dosage , Sulfides/therapeutic use , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/therapeutic use , Apoptosis/drug effects , Apoptosis/radiation effects , Ferroptosis/drug effects , Ferroptosis/radiation effects
16.
Front Immunol ; 13: 815609, 2022.
Article En | MEDLINE | ID: mdl-35173729

Conventional vaccines are very efficient in the prevention of bacterial infections caused by extracellular pathogens due to effective stimulation of pathogen-specific antibodies. In contrast, considering that intracellular surveillance by antibodies is not possible, they are typically less effective in preventing or treating infections caused by intracellular pathogens such as Mycobacterium tuberculosis. The objective of the current study was to use so-called photochemical internalization (PCI) to deliver a live bacterial vaccine to the cytosol of antigen-presenting cells (APCs) for the purpose of stimulating major histocompatibility complex (MHC) I-restricted CD8 T-cell responses. For this purpose, Mycobacterium bovis BCG (BCG) was combined with the photosensitiser tetraphenyl chlorine disulfonate (TPCS2a) and injected intradermally into mice. TPCS2a was then activated by illumination of the injection site with light of defined energy. Antigen-specific CD4 and CD8 T-cell responses were monitored in blood, spleen, and lymph nodes at different time points thereafter using flow cytometry, ELISA and ELISPOT. Finally, APCs were infected and PCI-treated in vitro for analysis of their activation of T cells in vitro or in vivo after autologous vaccination of mice. Combination of BCG with PCI induced stronger BCG-specific CD4 and CD8 T-cell responses than treatment with BCG only or with BCG and TPCS2a without light. The overall T-cell responses were multifunctional as characterized by the production of IFN-γ, TNF-α, IL-2 and IL-17. Importantly, PCI induced cross-presentation of BCG proteins for stimulation of antigen-specific CD8 T-cells that were particularly producing IFN-γ and TNF-α. PCI further facilitated antigen presentation by causing up-regulation of MHC and co-stimulatory proteins on the surface of APCs as well as their production of TNF-α and IL-1ß in vivo. Furthermore, PCI-based vaccination also caused local inflammation at the site of vaccination, showing strong infiltration of immune cells, which could contribute to the stimulation of antigen-specific immune responses. This study is the first to demonstrate that a live microbial vaccine can be combined with a photochemical compound and light for cross presentation of antigens to CD8 T cells. Moreover, the results revealed that PCI treatment strongly improved the immunogenicity of M. bovis BCG.


BCG Vaccine/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Lung/immunology , Animals , Antigen Presentation/immunology , Antigen-Presenting Cells/immunology , BCG Vaccine/administration & dosage , Cross-Priming , Female , Inflammation/immunology , Injections, Intradermal , Interferon-gamma/biosynthesis , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mycobacterium bovis/immunology , Photosensitizing Agents/administration & dosage , Tumor Necrosis Factor-alpha/biosynthesis , Vaccination/methods
17.
Adv Drug Deliv Rev ; 182: 114134, 2022 03.
Article En | MEDLINE | ID: mdl-35122881

Photoimaging and phototherapy have become major platforms for the diagnosis and treatment of various health complications. These applications require a photosensitizer (PS) that is capable of absorbing light from a source and converting it into other energy forms for detection and therapy. While synthetic inorganic materials such as quantum dots and gold nanorods have been widely explored for their medical diagnosis and photodynamic (PDT) and photothermal (PTT) therapy capabilities, translation of these technologies has lagged, primarily owing to potential cytotoxicity and immunogenicity issues. Of the various photoreactive molecules, the naturally occurring endogenous compound heme, a constituent of red blood cells, and its derivatives, porphyrin, biliverdin and bilirubin, have shown immense potential as noteworthy candidates for clinically translatable photoreactive agents, as evidenced by previous reports. While porphyrin-based photomedicines have attracted significant attention and are well documented, research on photomedicines based on two other heme-derived compounds, biliverdin and bilirubin, has been relatively lacking. In this review, we summarize the unique photoproperties of heme-derived compounds and outline recent efforts to use them in biomedical imaging and phototherapy applications.


Diagnostic Imaging/methods , Heme/pharmacology , Photosensitizing Agents/pharmacology , Phototherapy/methods , Heme/administration & dosage , Heme/pharmacokinetics , Humans , Nanoparticle Drug Delivery System , Photochemotherapy/methods , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/pharmacokinetics , Porphyrins/administration & dosage , Porphyrins/pharmacology
18.
Carbohydr Polym ; 282: 119112, 2022 Apr 15.
Article En | MEDLINE | ID: mdl-35123747

In this study, a biodegradable photodynamic antibacterial film (Car-Cur) was prepared using casting method with κ-Carrageenan (κ-Car) as film-forming substrate and curcumin-ß-cyclodextrin (Cur-ß-CD) complex as photosensitizer. The comprehensive performance of this Car-Cur film was investigated. The obtained results showed that the concentration of Cur-ß-CD was an important factor determining the properties of film including tensile strength (TS) elongation at break (EB), water vapor permeability (WVP), water content (WC) and thermal stability. When the concentration of Cur-ß-CD is 1%, the film demonstrated the maximum TS and EB, increased thermal stability, with desirable WVP and WC. Furthermore, this film also showed good photodynamic antibacterial potential against Staphylococcus aureus and Escherichia coli upon irradiation of blue LED light. Moreover, the film can be degraded in the soil in one week. In conclusion, our results suggested Car-Cur photodynamic film could be developed as biodegradable antimicrobial packaging material for food preservation.


Anti-Bacterial Agents , Carrageenan , Curcumin , Escherichia coli/drug effects , Photosensitizing Agents , Staphylococcus aureus/drug effects , beta-Cyclodextrins , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/radiation effects , Carrageenan/administration & dosage , Carrageenan/chemistry , Carrageenan/radiation effects , Curcumin/administration & dosage , Curcumin/chemistry , Curcumin/radiation effects , Escherichia coli/growth & development , Food Packaging , Hot Temperature , Light , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/chemistry , Photosensitizing Agents/radiation effects , Staphylococcus aureus/growth & development , Steam , Tensile Strength , beta-Cyclodextrins/administration & dosage , beta-Cyclodextrins/chemistry , beta-Cyclodextrins/radiation effects
19.
Drug Deliv ; 29(1): 238-253, 2022 Dec.
Article En | MEDLINE | ID: mdl-35001784

Photodynamic therapy (PDT) has been applied in cancer treatment by utilizing reactive oxygen species (ROS) to kill cancer cells. However, the effectiveness of PDT is greatly reduced due to local hypoxia. Hypoxic activated chemotherapy combined with PDT is expected to be a novel strategy to enhance anti-cancer therapy. Herein, a novel liposome (LCT) incorporated with photosensitizer (PS) and bioreductive prodrugs was developed for PDT-activated chemotherapy. In the design, CyI, an iodinated cyanine dye, which could simultaneously generate enhanced ROS and heat than other commonly used cyanine dyes, was loaded into the lipid bilayer; while tirapazamine (TPZ), a hypoxia-activated prodrug was encapsulated in the hydrophilic nucleus. Upon appropriate near-infrared (NIR) irradiation, CyI could simultaneously produce ROS and heat for synergistic PDT and photothermal therapy (PTT), as well as provide fluorescence signals for precise real-time imaging. Meanwhile, the continuous consumption of oxygen would result in a hypoxia microenvironment, further activating TPZ free radicals for chemotherapy, which could induce DNA double-strand breakage and chromosome aberration. Moreover, the prepared LCT could stimulate acute immune response through PDT activation, leading to synergistic PDT/PTT/chemo/immunotherapy to kill cancer cells and reduce tumor metastasis. Both in vitro and in vivo results demonstrated improved anticancer efficacy of LCT compared with traditional PDT or chemotherapy. It is expected that these iodinated cyanine dyes-based liposomes will provide a powerful and versatile theranostic strategy for tumor target phototherapy and PDT-induced chemotherapy.


Antineoplastic Agents/pharmacology , Hypoxia/pathology , Nanoparticle Drug Delivery System/chemistry , Photosensitizing Agents/pharmacology , Phototherapy/methods , Tirapazamine/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Cell Survival/drug effects , Chemistry, Pharmaceutical , Chromosome Aberrations/drug effects , DNA Damage/drug effects , Drug Carriers/chemistry , Drug Liberation , Liposomes/chemistry , Mice , Mice, Inbred BALB C , Particle Size , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/pharmacokinetics , Reactive Oxygen Species/metabolism , Surface Properties , Tirapazamine/administration & dosage , Tirapazamine/pharmacokinetics , Xenograft Model Antitumor Assays
20.
Article En | MEDLINE | ID: mdl-34672476

BACKGROUND: Port-wine stains occur in 0.3-0.5% newborns, mainly on the face and neck. Pulsed dye laser is recognized as the gold standard treatment; nevertheless, it is associated with a low cure rate and a high recurrence rate. AIMS: This study aims to evaluate the efficacy of hemoporfin photodynamic therapy for pulsed dye laser-resistant port-wine stains in children. METHODS: We studied 107 children who received hemoporfin photodynamic therapy for port-wine stains on the face and neck that were resistant to pulsed dye laser. After intravenous injection of 5 mg/kg hemoporfin, the local lesion was irradiated with 532 nm LED green light for 20 min with a power density of 80-100 mW/cm2. A total of 65 patients were given a second treatment after eight weeks. The efficacy and therapeutic responses were recorded at four days and eight weeks after each treatment. RESULTS: The efficacy was positively correlated with the number of treatments received; two treatment sessions yielded significantly better results compared to a single treatment with a response rate of 96.9%, a significant response rate of 50.8% and a cure rate of 21.5%, respectively (P < 0.001). After two treatment sessions, the efficacy was negatively correlated with age (P = 0.04). The efficacy for port-wine stains located on the lateral part was better than that of the central face (P = 0.04). The efficacy for the pink type was better than that for the red and purple types (P = 0.03). No allergic or systematic adverse reactions were reported. LIMITATIONS: No objective measurement data were available. CONCLUSION: Hemoporfin photodynamic therapy is effective and safe for pulsed dye laser-resistant facial port-wine stains in children.


Hematoporphyrins/administration & dosage , Photochemotherapy , Photosensitizing Agents/administration & dosage , Port-Wine Stain/drug therapy , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male , Retrospective Studies
...